Horizon Education

HORIZON EDUCATION SINGAPORE

Additional Mathematics

Division of Mathematics

Practice Questions: Binomial Expansion

Set 1

- 1
- (a) Find the coefficient of x in the expansion of $\left(x + \frac{1}{2x^2}\right)^{10}$. [3]
- (b) Obtain the first 3 terms in the expansion $(1-p)^7$ in ascending powers of p. Hence find the coefficient of x^2 in the expansion $(1-2x-x^2)^7$. [4]
- 2 Find, in descending powers of x, the first four terms in the expansion $\left(x^2 \frac{1}{x}\right)^7$. Hence, determine the coefficient of x^5 in the expansion of $\left(2 + \frac{1}{x^3}\right) \left(x^2 - \frac{1}{x}\right)^7$. [5]
 - (a) Find the term independent of x in the expansion of $\left(3x \frac{1}{2\sqrt{x}}\right)^9$. [3]
 - (b) In the binomial expansion of $(1 + kn)^n$, where $n \ge 3$ and k is a constant, the coefficient of x^2 and x^3 are equal. Express k in terms of n. [3]
- 4

3

(a) Obtain the first three terms in the expansion of $(1 + p)^n$ in ascending power of p, where n is a positive integer. By using suitable substitution, prove that the coefficient of x^2 in the expansion of $(1 + x + x^n)^n$ is $\frac{n^2+2}{2}$. [4]

(b) Given that the coefficient of x^2 in the expansion nof $(1 - x)(1 + x + x^2)$ is 190, find the value of *n*. [2]

5 Find the term independent of x in the expansion of
$$\left(x^2 + \frac{1}{2x^3}\right)^{10}$$
. [5]

6

(a) Find the coefficient of
$$x^{-5}$$
 in the expansion $\left(2x^2 - \frac{1}{3x^3}\right)^{10}$. [4]

(b) Find, in ascending power of x, the first three terms in the expansion of (1 + ax)⁶. Given that the first two non-zero terms in the expansion of (1 + bx)(1 + ax)⁶ are 1 and -⁷/₃x², find the possible values of a and b. [6]

7 Find the coefficient of x^{10} in $(3x^2 + 1)\left(1 - \frac{x^2}{3}\right)^9$. [5]

8 In the expansion of $\left(\frac{1}{2x^3} - x\right)^8$, find the term independent of x and the coefficient of $\frac{1}{x^4}$.

Hence, find the constant term in the expansion of $(2 - 3x^2)^2 \left(\frac{1}{2x^3} - x\right)^8$. [5]

9 Write down and simplify the first three terms of the binomial expansion of $\left(2-\frac{x}{6}\right)^6$ in ascending powers of x. Given that $\left(p+qx-x^2\right)\left(2-\frac{x}{6}\right)^6 = 48-88x+rx^2+...$, solve for p, q and r. [6]

10

- (a) Find the term independent of x in the expansion $\left(x^2 \frac{1}{3x^6}\right)^{24}$. [3]
- (**b**) Given that the first two non-zero terms of the expansion of $(1 + mx) \left(1 \frac{x}{2}\right)^n$ are 1 and $-\frac{15}{4}x^2$, where *n* is a positive integer, find the value of *m* and of *n*. [6]

11

- (i) The binomial expansion of $(1 + ax)^n$, where n > 0, in ascending powers of x is $1 30x + 420x^2 kx^3 + \dots$ Find the values of a, n and k. [5]
- (ii) Find the term independent of x in the expansion of $\left(2x^2 \frac{1}{x^4}\right)^9$. [3]
- Find the first four terms in the expansion of (3 + x)⁶ in ascending powers of x. Use the expansion to
 (a) estimate the value of (3.02)⁶ correct to 4 decimal places,
 - (**b**) find the coefficient of x^3 in the expansion of $(2x^2 1)(3 + x)^6$. [5]
- 13 Given that the expansion of $(a 3x)\left(1 \frac{x}{2}\right)^n$ in ascending powers of x is $2 11x + bx^2 + \dots$, find the values of the constants a, b and n. [6]

14 Obtain the first four terms in the expansion of $\left(a + \frac{1}{100a}\right)^6$ in descending powers of *a*. By using this expansion, evaluate $(1.01)^6$ correct to 3 decimal places. [5]

15 Find the first three terms, in ascending powers of x, in the expansion of $(2 + x)^8$, simplifying your terms. Hence, find the coefficient of x^2 in the expansion of $(1 - x)^2(2 + x)^8$. [5]

16 The first three terms in the expansion of $(1 + x)^n$ are $1 - 9 + \frac{297}{8}$. Find the values of x and of n. [4]

17

(a) Write down the first three terms in the expansion, in ascending powers of x, of (2 + ax)⁶, where a is a constant. In the expansion of (1 + bx)(2 + ax)⁶, where a and b are constants and a is a positive integers, the first two non-zero terms are 64 and -336x². Find the value of a and of b.

(b) In the expansion of $(2 + 5x)^n$, the coefficients of x^2 and x^3 are in the ratio 1:5, find the value of n. [4]

18

- (a) Find the term independent of x in the expansion $\left(x^3 + \frac{5}{x}\right)^8$. [3]
- (b) Write down and simplify, in ascending powers of x, the first three terms of the expansion
 - (i) $\left(1+\frac{1}{2}x\right)^7$
 - (ii) $(3-2x)^7$

Hence, or otherwise, obtain the coefficient of x^2 in the expansion of (3 -

$$\frac{1}{x}x - x^2\Big)^7.$$
 [5]

- 19 Obtain
 - (i) the first 3 terms in the expansion, in ascending powers of x, of $(2 + x)^n$ in terms of n, [2]
 - (ii) the value of *n* in the expansion of $(2 + x)^n$ if the ratio of the coefficient of *x* to that of x^2 is 1:10. [3]

(a) Find, in ascending powers of x, the first three terms in the expansion of $(2-3x)^7$. [3]

(b) Given that
$$(1 + ax)^n = 1 + 36x + 594x^2 + \dots$$
, find a and n. [3]

21 Find the coefficient of x^4 and x^6 in the expansion of $\left(\frac{1}{2} + x^2\right)^{12}$. Hence, find the coefficient of x^6 in the expansion of $(2x^2 - 1)\left(\frac{1}{2} + x^2\right)^{12}$. [5]

END

20