Qivision of Mathematics

HORIZON EDUCATION SINGAPORE
Additional Mathematics
Practice Questions: Binomial Expansion

1
(a) Find the coefficient of x in the expansion of $\left(x+\frac{1}{2 x^{2}}\right)^{10}$.
(b) Obtain the first 3 terms in the expansion $(1-p)^{7}$ in ascending powers of p. Hence find the coefficient of x^{2} in the expansion $\left(1-2 x-x^{2}\right)^{7}$.

2 Find, in descending powers of x, the first four terms in the expansion $\left(x^{2}-\frac{1}{x}\right)^{7}$. Hence, determine the coefficient of x^{5} in the expansion of $\left(2+\frac{1}{x^{3}}\right)\left(x^{2}-\frac{1}{x}\right)^{7}$.

3
(a) Find the term independent of x in the expansion of $\left(3 x-\frac{1}{2 \sqrt{x}}\right)^{9}$.
(b) In the binomial expansion of $(1+k n)^{n}$, where $n \geq 3$ and k is a constant, the coefficient of x^{2} and x^{3} are equal. Express k in terms of n.

4
(a) Obtain the first three terms in the expansion of $(1+p)^{n}$ in ascending power of p, where n is a positive integer.
By using suitable substitution, prove that the coefficient of x^{2} in the expansion of $\left(1+x+x^{n}\right)^{n}$ is $\frac{n^{2}+2}{2}$.
(b) Given that the coefficient of x^{2} in the expansion nof $(1-x)\left(1+x+x^{2}\right)$ is 190 , find the value of n.

5 Find the term independent of x in the expansion of $\left(x^{2}+\frac{1}{2 x^{3}}\right)^{10}$.

6
(a) Find the coefficient of x^{-5} in the expansion $\left(2 x^{2}-\frac{1}{3 x^{3}}\right)^{10}$.
(b) Find, in ascending power of x, the first three terms in the expansion of $(1+a x)^{6}$. Given that the first two non-zero terms in the expansion of $(1+b x)(1+a x)^{6}$ are 1 and $-\frac{7}{3} x^{2}$, find the possible values of a and b.
$7 \quad$ Find the coefficient of x^{10} in $\left(3 x^{2}+1\right)\left(1-\frac{x^{2}}{3}\right)^{9}$.

8 In the expansion of $\left(\frac{1}{2 x^{3}}-x\right)^{8}$, find the term independent of x and the coefficient of $\frac{1}{x^{4}}$.
Hence, find the constant term in the expansion of $\left(2-3 x^{2}\right)^{2}\left(\frac{1}{2 x^{3}}-x\right)^{8}$.

9 Write down and simplify the first three terms of the binomial expansion of $\left(2-\frac{x}{6}\right)^{6}$ in ascending powers of x.
Given that $\left(p+q x-x^{2}\right)\left(2-\frac{x}{6}\right)^{6}=48-88 x+r x^{2}+\ldots$, solve for p, q and r.

10
(a) Find the term independent of x in the expansion $\left(x^{2}-\frac{1}{3 x^{6}}\right)^{24}$.
(b) Given that the first two non-zero terms of the expansion of $(1+m x)\left(1-\frac{x}{2}\right)^{n}$ are 1 and $-\frac{15}{4} x^{2}$, where n is a positive integer, find the value of m and of n.
(i) The binomial expansion of $(1+a x)^{n}$, where $n>0$, in ascending powers of x is $1-30 x+420 x^{2}-k x^{3}+\ldots$. Find the values of a, n and k.
(ii) Find the term independent of x in the expansion of $\left(2 x^{2}-\frac{1}{x^{4}}\right)^{9}$.

12 Find the first four terms in the expansion of $(3+x)^{6}$ in ascending powers of x. Use the expansion to
(a) estimate the value of $(3.02)^{6}$ correct to 4 decimal places,
(b) find the coefficient of x^{3} in the expansion of $\left(2 x^{2}-1\right)(3+x)^{6}$.

13 Given that the expansion of $(a-3 x)\left(1-\frac{x}{2}\right)^{n}$ in ascending powers of x is $2-11 x+b x^{2}+\ldots$, find the values of the constants a, b and n.

14 Obtain the first four terms in the expansion of $\left(a+\frac{1}{100 a}\right)^{6}$ in descending powers of a. By using this expansion, evaluate $(1.01)^{6}$ correct to 3 decimal places.

15 Find the first three terms, in ascending powers of x, in the expansion of $(2+x)^{8}$, simplifying your terms. Hence, find the coefficient of x^{2} in the expansion of $(1-x)^{2}(2+x)^{8}$.

16 The first three terms in the expansion of $(1+x)^{n}$ are $1-9+\frac{297}{8}$. Find the values of x and of n.
(a) Write down the first three terms in the expansion, in ascending powers of x, of $(2+a x)^{6}$, where a is a constant.
In the expansion of $(1+b x)(2+a x)^{6}$, where a and b are constants and a is a positive integers, the first two non-zero terms are 64 and $-336 x^{2}$. Find the value of a and of b.
(b) In the expansion of $(2+5 x)^{n}$, the coefficinets of x^{2} and x^{3} are in the ratio $1: 5$, find the value of n.

18
(a) Find the term independent of x in the expansion $\left(x^{3}+\frac{5}{x}\right)^{8}$.
(b) Write down and simplify, in ascending powers of x, the first three terms of the expansion
(i) $\left(1+\frac{1}{2} x\right)^{7}$
(ii) $\quad(3-2 x)^{7}$

Hence, or otherwise, obtain the coefficient of x^{2} in the expansion of $(3-$
$\left.\frac{1}{x} x-x^{2}\right)^{7}$.

19 Obtain
(i) the first 3 terms in the expansion, in ascending powers of x, of $(2+x)^{n}$ in terms of n,
(ii) the value of n in the expansion of $(2+x)^{n}$ if the ratio of the coefficient of x to that of x^{2} is $1: 10$.
(a) Find, in ascending powers of x, the first three terms in the expansion of $(2-3 x)^{7}$.
(b) Given that $(1+a x)^{n}=1+36 x+594 x^{2}+\ldots$, find a and n.

21 Find the coefficient of x^{4} and x^{6} in the expansion of $\left(\frac{1}{2}+x^{2}\right)^{12}$. Hence, find the coefficient of x^{6} in the expansion of $\left(2 x^{2}-1\right)\left(\frac{1}{2}+x^{2}\right)^{12}$.

